P=2(l)+2(w)
90=2(4w-5)+2(w)
90= (8w-10)+2w
90=10w-10
10+90=10w-10+10
100=10w
w=10
90=2(4[10]-5)+2(10)
90=2(40-5)+2(10)
90=2(35)+20
90=70+20
90=90
Answer:
x = 0 and y = 4
x = 4 and y = 0
thus: 2 solutions
Step-by-step explanation:
-x - y = 8
2x - y = -1
Ok, we are going to solve this in 2 parts. First we have to solve for one of the variables in one of the equation in terms of the other variable. I like to take the easiest equation first and try to avoid fractions, so let's use the first equation and solve for x.
-x - y = 8 add y to each side
-x = 8 + y divide by -1
x = -8 - y
So now we have a value for x in terms of y that we can use to substitute into the other equation. In the other equation we are going to put -8 - y in place of the x.
2x - y = -1
2(-8 - y) - y = -1 multiply the 2 through the parentheses
-16 - 2y - y = -1 combine like terms
-16 - 3y = -1 add 16 to both sides
-3y = 15 divide each side by -3
y = -5
Now we have a value for y. We need to plug it into either of the original equations then solve for x. I usually choose the most simple equation.
-x - y = 8
-x - (-5) = 8 multiply -1 through the parentheses
-x + 5 = 8 subtract 5 from each side
-x = 3 divide each side by -1
x = -3
So our solution set is
(-3, -5)
That is the point on the grid where the 2 equations are equal, so that is the place where they intersect.
<span>Let r(x,y) = (x, y, 9 - x^2 - y^2)
So, dr/dx x dr/dy = (2x, 2y, 1)
So, integral(S) F * dS
= integral(x in [0,1], y in [0,1]) (xy, y(9 - x^2 - y^2), x(9 - x^2 - y^2)) * (2x, 2y, 1) dy dx
= integral(x in [0,1], y in [0,1]) (2x^2y + 18y^2 - 2x^2y^2 - 2y^4 + 9x - x^3 - xy^2) dy dx
= integral(x in [0,1]) (x^2 + 6 - 2x^2/3 - 2/5 + 9x - x^3 - x/3) dx
= integral(x in [0,1]) (28/5 + x^2/3 + 26x/3 - x^3) dx
= 28/5 + 40/9 - 1/4
= 1763/180 </span>