Answer:
The frequency of oscillation of the simple pendulum is 0.49 Hz.
Explanation:
Given that,
Mass of the simple pendulum, m = 0.35 kg
Length of the string to which it is attached, l = 1 m
We need to find the frequency of oscillation. The frequency of oscillation of the simple pendulum is given by :

So, the frequency of oscillation of the simple pendulum is 0.49 Hz. Hence, this is the required solution.
Answer:
<em>d. unchanged.</em>
Explanation:
The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.
In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from
v = fλ
that the frequency is tied to the wave, and does not change throughout the waveform.
where v is the speed of the sound wave
f is the frequency
λ is the wavelength of the sound wave.
<h2>
Answer: B)Scientists’ understanding of cells continually improved as the results of studies built upon each other over time and formed the cell theory.</h2>
Explanation:
Nowadays we know <u>cells are essential microscopic units that make up the living beings, capable of reproducing independently. </u>
However, this is the result of a long process of discoveries and studies made since the 19th century, in which the continuous improvement of new technologies was helpful.
In fact, it is wel known the English scientist Robert Hooke was the first to discover the existence of cells by looking through a compound microscope at a cork sheet, realizing that it was made up of small polygonal holes (like those of a honeycomb) that reminded him of the chambers in which the monks stayed (called cells). Then, during the next centuries more studies were made until we had the current knowledge about the structure of a cell.