Answer:
Δd = 7.22 10⁻² m
Explanation:
For this exercise we must use the dispersion relationship of a diffraction grating
d sin θ = m λ
let's use trigonometry
tan θ = y / L
how the angles are small
tant θ = sinθ /cos θ = sin θ
we substitute
sin θ = y / L
d y / L = m λ
y = m λ L / d
let's use direct ruler rule to find the distance between two slits
If there are 500 lines in 1 me, what distance is there between two lines
d = 2/500
d = 0.004 me = 4 10⁻⁶ m
diffraction gratings are built so that most of the energy is in the first order of diffraction m = 1
let's calculate for each wavelength
λ = 656 nm = 656 10⁻⁹ m
d₁ = 1 656 10⁻⁹ 1.7 / 4 10⁻⁶
d₁ = 2.788 10⁻¹ m
λ = 486 nm = 486 10⁻⁹ m
d₂ = 1 486 10⁻⁹ 1.7 / 4 10⁻⁶
d₂ = 2.066 10⁻¹ m
the distance between the two lines is
Δd = d1 -d2
Δd = (2,788 - 2,066) 10⁻¹
Δd = 7.22 10⁻² m
Answer:
Explanation:
Incandescent bulbs are extremely inefficient because 90% of the energy is wasted as heat, with only 10% being converted to visible light. This gives incandescent bulbs a luminous efficiency rating of around 2%. Ultimately, incandescent bulbs perform better as heaters than as light sources.
Answer:
The balloon prohibits the flow of air through the air capacitor.
Explanation:
Just like an electric capacitor has an insulator between the plates, the air capacitor has a balloon between the chambers.
Answer:
v = 1.2 m/s
Explanation:
The wavelength of the waves is given as the horizontal distance between the crests:
λ = wavelength = 5.5 m
Now, the time period is given as the time taken by boat to move from the highest point again to the highest point. So it will be equal to twice the time taken by the boat to travel from highest to the lowest point:
T = Time Period = 2(2.3 s) = 4.6 s
Now, the speed of the wave is given as:

where,
v= speed of wave = ?
f = frequency of wave = 
Therefore,

<u>v = 1.2 m/s</u>
Answer:
yes
Explanation:
because it is independent of eachother