When you talk about rate, you will expect that it will be in terms of a time unit. It measures how fast it is going. So, you would expect that the denominator is in time units. For the movement, you can measure this with either distance or velocity.
So, for the first variety, you would need distance and time to measure the rate of how far you go at a certain time. It is also called as velocity. For the second variety, you would need velocity and time to measure the rate of how fast you are going at a certain interval. It is also called as acceleration.
It is dangerous to stand close to railroad tracks when a rapidly moving commuter train passes. Explain why atmospheric pressure would push you toward the moving train. Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect.
Pls brainliest!? :)
Answer:
<em>d. 268 s</em>
Explanation:
<u>Constant Speed Motion</u>
An object is said to travel at constant speed if the ratio of the distance traveled by the time taken is constant.
Expressed in a simple equation, we have:

Where
v = Speed of the object
d = Distance traveled
t = Time taken to travel d.
From the equation above, we can solve for d:
d = v . t
And we can also solve it for t:

Two cars are initially separated by 5 km are approaching each other at relative speeds of 55 km/h and 12 km/h respectively. The total speed at which they are approaching is 55+12 = 67 km/h.
The time it will take for them to meet is:

t = 0.0746 hours
Converting to seconds: 0.0746*3600 = 268.56
The closest answer is d. 268 s
Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.