The frictional force is 218.6 N
Explanation:
The block in the problem is at rest along the inclined surface: this means that the net force acting along the direction parallel to the incline must be zero.
There are two forces acting along this direction:
- The component of the weight parallel to the incline, downward along the plane, of magnitude

where
m = 46 kg is the mass
is the acceleration of gravity
is the angle of the incline
- The (static) frictional force, acting upward, of magnitude 
Since the block is in equilibrium, we can write

And substituting, we find the force of friction:

Learn more about frictional force along an inclined plane:
brainly.com/question/5884009
#LearnwithBrainly
Answer:
32 cm
Explanation:
f = focal length of the converging lens = 16 cm
Since the lens produce the image with same size as object, magnification is given as
m = magnification = - 1
p = distance of the object from the lens
q = distance of the image from the lens
magnification is given as
m = - q/p
- 1 = - q/p
q = p eq-1
Using the lens equation, we get
1/p + 1/q = 1/f
using eq-1
1/p + 1/p = 1/16
p = 32 cm
Answer:
Point A
Explanation:
The work done by stretching or compressing a spring is given by E=1/2kx²
The potential energy is numerically equal to the work done.
This means that the higher the bigger the value of the extension, x, the higher the energy contained.
In this scenario the modulus of x is considered.
Among the given values of x the modulus of -5 is the largest.
thus it gives the highest value of energy.
Anything less dense than water will float, like oil. Anything more dense than water will sink, like rock.