Answer:
8.1 x 10^13 electrons passed through the accelerator over 1.8 hours.
Explanation:
The total charge accumulated in 1.8 hours will be:
Total Charge = I x t = (-2.0 nC/s)(1.8 hrs)(3600 s/ 1 hr)
Total Charge = - 12960 nC = - 12.96 x 10^(-6) C
Since, the charge on one electron is e = - 1.6 x 10^(-19) C
Therefore, no. of electrons will be:
No. of electrons = Total Charge/Charge on one electron
No. of electrons = [- 12.96 x 10^(-6) C]/[- 1.6 x 10^(-19) C]
<u>No. of electrons = 8.1 x 10^13 electrons</u>
Answer:
velocity and displacement answer
Explanation:
thanks me
<span><span>Velocity is a vector, and the initial and final ones are in opposite directions.
There must have been acceleration in order to change the direction of motion.</span>
A) No. The initial and final velocities are the same.
This is all wrong, and not the correct choice.
It's "Yes", and the initial and final velocities are NOT the same.
B) Yes. The ball had to slow down in order to change direction.
This is poor, and not the correct choice.
The "Yes" is correct, but the explanation is bad.
Acceleration does NOT require any change in speed.
C) No. Acceleration is the change in velocity. The ball's velocity is constant.
This is all wrong, and not the correct choice.
It's "Yes", there IS acceleration, and the ball's velocity is NOT constant.
D) Yes. Even though the initial and final velocities are the same, there is a change in direction for the ball.
This choice is misleading too.
The "Yes" is correct ... there IS acceleration.
The change in direction is the reason.
The initial and final velocities are NOT the same. Only the speeds are.
</span>
<h3><u>Answer;</u></h3>
40 light bulbs
<h3><u>Explanation</u>;</h3>
The total resistance of components or bulbs in series is given as the sum of resistance of all the components.
Thus; if there are bulbs in series each with a resistance of 1.5 Ω, the the total resistance will be; 1.5nΩ
From the ohms law;
V = IR , where V is the voltage, I is the current and R is the resistor.
Thus; R = V/i
R = 120/2
= 60 Ω
But, there are n bulbs each with 1.5 Ω; thus there are;
n = 60/1.5
<u> = 40 Bulbs </u>