The answer to your question is meters.
Answer:
8977.7 kg/m^3
Explanation:
Volume of water displaced = 55 cm^3 = 55 x 10^-6 m^3
Reading of balance when block is immersed in water = 4.3 N
According to the Archimedes principle, when a body is immersed n a liquid partly or wholly, then there is a loss in the weight of body which is called upthrust or buoyant force. this buoyant force is equal to the weight of liquid displaced by the body.
Buoyant force = weight of the water displaced by the block
Buoyant force = Volume of water displaced x density of water x g
= 55 x 10^-6 x 1000 x .8 = 0.539 N
True weight of the body = Weight of body in water + buoyant force
m g = 4.3 + 0.539 = 4.839
m = 0.4937 kg
Density of block = mass of block / volume of block
=
Density of block = 8977.7 kg/m^3
Answer:
The impression of the image on the retina lasts for about 1/16th of a second after the removal of the object. If a burning stick of incense is revolved at a rate of more than sixteen revolutions per second, we see a circle of red light due to persistence of vision.
Explanation:
Answer:
T₂ = 95.56°C
Explanation:
The final resistance of a material after being heated is given by the relation:
R' = R(1 + αΔT)
where,
R' = Final Resistance = 207.4 Ω
R = Initial Resistance = 154.9 Ω
α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹
ΔT = Change in Temperature = ?
Therefore,
207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]
207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT
1.34 - 1 = (0.0045°C⁻¹)ΔT
ΔT = 0.34/0.0045°C⁻¹
ΔT = 75.56°C
but,
ΔT = Final Temperature - Initial Temperature
ΔT = T₂ - T₁ = T₂ - 20°C
T₂ - 20°C = 75.56°C
T₂ = 75.56°C + 20°C
<u>T₂ = 95.56°C</u>
Answer:
Explanation:
Given
Ball of mass m
maximum Bearable Tension in string is F
Let length of the cord be L m and moving at a speed of v m/s
Here Tension will Provide Centripetal Force
T=Centripetal Force