E is the vapourising state
The block has maximum kinetic energy at the bottom of the curved incline. Since its radius is 3.0 m, this is also the block's starting height. Find the block's potential energy <em>PE</em> :
<em>PE</em> = <em>m g h</em>
<em>PE</em> = (2.0 kg) (9.8 m/s²) (3.0 m)
<em>PE</em> = 58.8 J
Energy is conserved throughout the block's descent, so that <em>PE</em> at the top of the curve is equal to kinetic energy <em>KE</em> at the bottom. Solve for the velocity <em>v</em> :
<em>PE</em> = <em>KE</em>
58.8 J = 1/2 <em>m v</em> ²
117.6 J = (2.0 kg) <em>v</em> ²
<em>v</em> = √((117.6 J) / (2.0 kg))
<em>v</em> ≈ 7.668 m/s ≈ 7.7 m/s
it would be at either A or B.
Answer: Force applied by trampoline = 778.5 N
<em>Note: The question is incomplete.</em>
<em>The complete question is : What force does a trampoline have to apply to a 45.0 kg gymnast to accelerate her straight up at 7.50 m/s^2? note that the answer is independent of the velocity of the gymnast. She can be moving either up or down or be stationary.
</em>
Explanation:
The total required the trampoline by the trampoline = net force accelerating the gymnast upwards + force of gravity on her.
= (m * a) + (m * g)
= m ( a + g)
= 45 kg ( 7.50 * 9.80) m/s²
Force applied by trampoline = 778.5 N
Answer:
The correct option is (a).
Explanation:
We know that, the E is inversely proportional to the distance as follows :

We can write it as follows :

Put all the values,

So, the correct option is (a).