Answer: Hi!
First, UxV = sin(a)*IUI*IVI
where a is the angle between U and V, in this case 45°.
First, the cross product of UxV points:
Here you can use the right hand method,
Put your hand flat, so the point of your fingers point in the same direction that the first vector, in this case U, so your fingers will point to the north.
Now roll your fingers in the direction of the second vector, so here you will roll your fingers in the northeast direction. Now you will see that your thumb is pointing down, so the cross product of UxV points down.
And the magnitude is 6*5*sin(45) = 21.213
Find the total cost of producing 5 widgets. Widget Wonders produces widgets. They have found that the cost, c(x), of making x widgets is a quadratic function in terms of x. The company also discovered that it costs $15.50 to produce 3 widgets, $23.50 to produce 7 widgets, and $56 to produce 12 widgets.
OK...so we have
a(7)^2 + b(7) + c = 23.50 → 49a + 7b + c = 23.50 (1)
a(3)^2 + b(3) + c = 15.50 → 9a + 3b + c = 15.50 subtracting the second equation from the first, we have
40a + 4b = 8 → 10a + b = 2 (2)
Also
a(12)^2 + b(12) + c = 56 → 144a + 12b + c = 56 and subtracting (1) from this gives us
95a + 5b = 32.50
And using(2) we have
95a + 5b = 32.50 (3)
10a + b = 2.00 multiplying the second equation by -5 and adding this to (3) ,we have
45a = 22.50 divide both sides by 45 and a = 1/2 and using (2) to find b, we have
10(1/2) + b = 2
5 + b = 2 b = -3
And we can use 9a + 3b + c = 15.50 to find "c"
9(1/2) + 3(-3) + c = 15.50
9/2 - 9 + c = 15.50
-4.5 + c = 15.50
c = 20
So our function is
c(x) = (1/2)x^2 - (3)x + 20
And the cost to produce 5 widgets is = $17.50
D. 160 you simplify the expression to get your answer.
Answer:
you know you really need to watch what you say that comes out of your mouth
Answer:
<h3><u>Let's</u><u> </u><u>understand the concept</u><u>:</u><u>-</u></h3>
Here angle B is 90°
So
and
Are right angled triangle
So we use Pythagoras thereon for solution
<h3><u>Required Answer</u><u>:</u><u>-</u></h3>
perpendicular=p=8cm
Hypontenuse =h =10cm
According to Pythagoras thereon

















- Now in

Perpendicular=p=8cm
Base =b=15cm
- We need to find Hypontenuse =AD(x)
According to Pythagoras thereon












