V^2=u^2 +2aS
U is found first by considering that first 8 secs and using v=u+at. {different v and u though}
V=-u+gt.
Magnitude of u = magnitude of v if there is no resistance ( because the conservation of energy says the k. E. must be the same when it passes you as when it left your hand).... up is negative here, down is positive.
V+v=gt
2v= g x 8
V=4xg.= the initial velocity for the next calculation
V^2=(4g)^2+(2xgx21)
So v can be calculated.
Answer:
ρ = 830.32 kg/m³
Explanation:
Given that
Oil head = 12.2 m
h= 12.2 m
Pressure P = 1.013 x 10⁵ Pa
Lets take density of the liquid =ρ
The pressure due to liquid P given as
P = ρ g h
Now by putting the all values in the above equation
1.013 x 10⁵ Pa = ρ x 10 x 12.2 ( take g =10 m/s²)
ρ = 830.32 kg/m³
Therefore the density of oil is 830.32 kg/m³
Answer:
Steel
Explanation:
Mass is density times volume.
m = ρV
Since they have the same size and shape, they have the same volume.
Steel has a higher density than Styrofoam, so at the same volume, the steel ball will have more mass.
A infared light has a higher
Answer:
a)
b)
c)
Explanation:
a) The angular velocity is related to the centripetal acceleration by the formula
, which for our purposes we will write as:

Since <em>we want this acceleration to be 1.5 times that due to gravity</em>, for our values we will have:

b) 1 rpm (revolution per minute) is equivalent to an angle of
radians in 60 seconds:

Which means <em>we can use the conversion factor</em>:

So we have (multiplying by the conversion factor, which is 1, not affecting anything but transforming our units):

c) The centripetal force will be given by Newton's 2nd Law F=ma, so on the centripetal direction for our values we have:
