Answer:
A) 35 ft
B) 5 ft
C) Net displacement = distance covered by the dog to retrieve the stick - distance covered before the dog starts chewing the stick
Explanation:
A) Total distance covered by the dog = 20 + 15
= 35 ft
B) Since the other distance covered by the dog before chewing the stick, after the retrieval, was in an opposite direction to the initial direction, then;
total displacement of the dog = 20 - 15
= 5 ft
C) Net displacement = distance covered by the dog to retrieve the stick + distance covered before the dog starts chewing the stick
But, displacement involves a specified direction. The distance covered before the dog starts chewing the stick was in an opposite direction to the initial direction.
Thus,
Net displacement = distance covered by the dog to retrieve the stick - distance covered before the dog starts chewing the stick
Answer:
the electric field strength on the second one is 2.67 N/C.
Explanation:
the electric fiel on the first one is:
E1 = k×q/(r^2)
r^2 = k×q/(E1)
= (9×10^9)×(q)/(24.0)
= 375000000q
then the electric field on the second one is:
E2 = k×q/(R^2)
we know that R = 3r
R^2 = 9×r^2
E2 = k×q/(9×r^2)
= k×q/(9×375000000q)
= k/(9×375000000)
= (9×10^9)/(9×375000000)
= 2.67 N/C
Therefore, the electric field strength on the second one is 2.67 N/C.
To solve this problem we will apply the concepts related to electric potential and electric potential energy. By definition we know that the electric potential is determined under the function:

= Coulomb's constant
q = Charge
r = Radius
At the same time

The values of variables are the same, then if we replace in a single equation we have this expression,

If we replace the values, we have finally that the charge is,




Therefore the potential energy of the system is 
I agree with the first responses
Answer:
The tension in the string is equal to Ct
And the time t0 when the rension in the string is 27N is 3.6s.
Explanation:
An approach to solving this problem jnvolves looking at the whole system as one body by drawing an imaginary box around both bodies and taking summation of the forces. This gives F2 - F1 = Ct. This is only possible assuming the string is massless and does not stretch, that way transmitting the force applied across it undiminished.
So T = Ct
When T = 27N then t = T/C = 27/7.5 = 3.6s