To solve this problem we need the concepts of Energy fluency and Intensity from chemical elements.
The energy fluency is given by the equation

Where
The energy fluency
c = Activity of the source
r = distance
E = electric field
In the other hand we have the equation for current in materials, which is given by

Then replacing our values we have that


We can conclude in this part that 1.3*10^7Bq is the activity coming out of the cylinder.
Now the energy fluency would be,



The uncollided flux density at the outer surface of the tank nearest the source is 
B. the distance the star is from Earth
Explanation:
The apparent magnitude of star is a function of its distance from the earth. It is one of the physical properties that is used to study a star.
The apparent magnitude of a star or other astronomical bodies is a measure of their brightness as seen from a location on the earth.
The apparent magnitude of a star depends on:
- Distance of the star from the location on earth.
- luminosity of the star
- the particles along the part of the star and earth that cuts off the light the earth receives.
learn more:
Star luminosity brainly.com/question/9084808
#learnwithBrainly
Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
The ONLY way to change the volume of a sample of gas is to transfer it to a container with different volume.
Simply changing its temperature or pressure in the same jar won't do it. Any amount of gas always fills whatever container you keep it in.