Answer:
electronic communications may be disrupted
Explanation:
Solar Flares: They occur when the magnetic field lines carrying charged particle entangle and reorganize over the photosphere of the Sun. In these flares charged particles leave the surface of the Sun to travel outwards.
If these flares are directed towards Earth, they will interact with anything related to electricity and magnetism. Out of the given options third option is correct as the electronic communication will be disrupted. If the flares are strong a complete power blackout may occur and that would disrupt all the communication channel and power transmission. Such events have occurred in the past as well.
Answer:
a) 107.1875 Hz
b) 214.375 Hz
c) 321.5625 Hz
Explanation:
L = length of the open organ pipe = 1.6 m
v = speed of sound = 343 m/s
f = fundamental frequency
fundamental frequency is given as

inserting the values


Hz
b)
first overtone is given as
f' = 2f
f' = 2 (107.1875)
f' = 214.375 Hz
c)
first overtone is given as
f'' = 3f
f'' = 3 (107.1875)
f'' = 321.5625 Hz
Answer:
please give me brainlist and follow
Explanation:
Formula for number of images formed by two plane mirrors incident at an angle θ is n = 360∘θ. If n is even, the number of images is n-1, if n is an odd number of images.
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have
