Answer:
The crest to trough distance = 8 m
Explanation:
Given that,
The amplitude of a particular wave is 4.0 m.
We need to find the crest to trough distance.
We know that,
Amplitude = The distance from the base line to the crest or the the distance from the baseline to the trough.
It means,
Distance from crest to trough = 2(Amplitude)
= 2(4)
= 8 m
Hence, the crest to trough distance is equal to 8 m.
Answer:
Simply,
<u>electrons</u> are "PARTICLES" orbiting the atoms, where, <u>current</u><u> </u>is the FLOW of some (free-to-move-around) electrons in a wire...
Answer:
an artificial body placed in orbit around the earth or moon or another planet in order to collect information or for communication.
Explanation:
Look it up on google
Answer:
5070
Explanation:
add them up and then you get <em>your</em><em> </em><em>answers</em><em> </em>
Answer:
Explanation:
On the Moon :----
1500 x 1.6 = 2400 m /s is initial velocity of bullet .
g = 1.6 m /s²
v = u - gt
0 = 2400 - 1.6 t
t = 1500 s
This is time of ascent
Time of decent will also be the same
Total time of flight = 2 x 1500 = 3000 s
On the Earth : ---
v = u - a₁ t
0 = u - a₁ x 18
u = 18a₁
v² = u² - 2 x a₁ x 2743.2
0 = (18a₁ )² - 2 x a₁ x 2743.2
a₁ = 16.93
For downward return
s = ut + 1/2 a₂ x t²
2743.2 = 0 + .5 x a₂ x 31²
a₂ = 5.7 m /s²
If d be the deceleration produced by air
g + d = 16.93 ( during upward journey )
g - d = 5.7
g = (16.93 + 5.7) / 2
= 11.315 m / s
d = 5.6 m /s²
So air is creating a deceleration of 5.6 m /s².