Answer:
388.97 nm
Explanation:
The computation of the wavelength of this light in benzene is shown below:
As we know that
n (water) = 1.333
n (benzene) = 1.501
And, the wavelength of water is 438 nm
Now placing these values to the above formula
So,
= 388.97 nm
We simply applied the above formula so that we can easily determine the wavelength of this light in benzene could come
It can be Strontium Iodide
Answer:
Radio waves have longer wavelength
Explanation:
Radio wave is an electromagnetic frequency that has the ability to travel through long distance. They have frequencies shuttling been the range of 10^4 hz and a frequency of 10^12 hz
Light wave is also called visible light. This is because it is visible to the naked eye, despite it being in the electromagnetic spectrum. It's frequency is usually between 4*10^-7 hz and a frequency of 7*10^-7 hz.
As can be seen from both, the radio waves length are quite far stronger than that of the light waves.
<span>A student hears a police siren.
The arithmetic of the Doppler Effect shows that if the distance between
the source and observer is changing, then the observer hears a different
frequency compared to the frequency actually radiating from the source.
Thus the first four choices would cause the student to hear a different
frequency:
-- if the student walked toward the police car
-- if the student walked away from the police car
-- if the police car moved toward the student
-- if the police car moved away from the student
The last two choices wouldn't affect the frequency heard by the student,
since the perceived frequency of a sound doesn't depend on its intensity.
-- if the intensity of the siren increased
-- if the intensity of the siren decreased.</span>