Answer:

Explanation:


If the sun considered as x=0 on the axis to put the center of the mass as a:

solve to r1


Now convert to coordinates centered on the center of mass. call the new coordinates x' and y' (we won't need y'). Now since in the sun centered coordinates the angular momentum was

where T = orbital period
then L'(x',y') = L(x) by conservation of angular momentum. So that means

Since
then

Answer:
• 36.4 kg of coal.
• 80 pounds of coal.
Explanation:
Using proportionality constant,
Mass of coal = 1,000,000/27,500,000 btus/metric ton
= 0.0364 metric tons of coal
Mass of coal = 1,000,000/25,000,000 btus/ton
= 0.04 tons of coal.
Converting metric tons to kilogram,
1 metric ton = 1000kg,
0.0364 metric ton;
= 36.4 kg of coal.
Converting tons to pounds,
1 ton = 2000 pounds,
0.04 metric ton;
= 80 pounds of coal.
Answer:
150J
Explanation:
Formula : <u>Work</u><u> </u><u>done</u>
Force x distance
work done = force x distance
Distance should be measured in meters
300÷100=3m
work done = 450 x 3
=150J
Refer to the diagram shown below.
Assume that air resistance is ignored.
Note:
The distance, h, of a falling object with initial vertical velocity of zero at time t is
h = (1/2)gt²
where
g = 9.8 m/s²
The initial vertical velocity of the supplies is 0 m/s.
It the time taken for the supplies to reach the ground is t, then
(50 m) = (1/2)*(9.8 m/s²)*(t s)²
Hence obtain
t² = 50/4.9 = 10.2041
t = 3.1944 s
The horizontal distance traveled at a speed of 100 m/s is
d = (100 m/s)*(3.1944 s) = 319.44 m
Answer: 319.4 m (nearest tenth)