Answer:
g(h(10)) = 43
Step-by-step explanation:
Given: g(x) = 4x – 4 and h(x) = 2x – 8.
We are to find g(h(10))
First we need to get g(h(x))
g(h(x)) = g(2x-8)
Replace x in g(x) with 2x-8 as shown:
g(2x-8) = 4(2x-8)-4
g(2x-8)= 8x-32-5
g(2x-8) = 8x-37
Hence g(h(x)) = 8x-37
g(h(10)) = 8(10)-37
g(h(10)) = 80-37
g(h(10)) = 43
Hence g(h(10)) is 43
Answer:
![\frac{2c}{3x^2c}+ \frac{36x^3c}{3x^2c} +\frac{24x^2}{3x^2c} [\tex]Step-by-step explanation:We need to find sum of 2 / 3x^2 +12x and 8 / cSo, solving:[tex](\frac{2}{3x^2} + 12 x ) +\frac{8}{c}](https://tex.z-dn.net/?f=%5Cfrac%7B2c%7D%7B3x%5E2c%7D%2B%20%5Cfrac%7B36x%5E3c%7D%7B3x%5E2c%7D%20%2B%5Cfrac%7B24x%5E2%7D%7B3x%5E2c%7D%20%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EStep-by-step%20explanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3EWe%20need%20to%20find%20sum%20of%202%20%2F%203x%5E2%20%2B12x%20and%208%20%2F%20c%3C%2Fp%3E%3Cp%3ESo%2C%20solving%3A%3C%2Fp%3E%3Cp%3E%5Btex%5D%28%5Cfrac%7B2%7D%7B3x%5E2%7D%20%2B%2012%20x%20%29%20%2B%5Cfrac%7B8%7D%7Bc%7D)
Taking LCM of 3x^2 and 1 i.e. 3x^2

Answer:
40
Step-by-step explanation:
5 × 8 = 40
1 × 40 = 40
2 × 20 = 40
Π and <span>√20 are irrational. The other ones can be written as a fraction, so are rational.</span>