Answer:
Explanation:
Oxyacids are acid containing oxygen; they are also known as acid-alcohol or acid-phenol. As said earlier, the strength of these acids increases with increases in the polarity of these compounds. So, what makes the polarity is as a result of the electronegative substituents attached to it. Halogen family possesses the highest electronegativity in the periodic table, and electronegativity decreases down the group.
The ranking of the oxyacids in order of decreasing acid strength from strongest to weakest acid is:
HClO3 > . HClO2 > HClO > HBrO
Answer:
7.37 mL of KOH
Explanation:
So here we have the following chemical formula ( already balanced ), as HNO3 reacts with KOH to form the products KNO3 and H2O. As you can tell, this is a double replacement reaction,
HNO3 + KOH → KNO3 + H2O
Step 1 : The moles of HNO3 here can be calculated through the given molar mass ( 0.140 M HNO3 ) and the mL of this nitric acid. Of course the molar mass is given by mol / L, so we would have to convert mL to L.
Mol of NHO3 = 0.140 M
30 / 1000 L = 0.140 M
0.03 L = .0042 mol
Step 2 : We can now convert the moles of HNO3 to moles of KOH through dimensional analysis,
0.0042 mol HNO2
( 1 mol KOH / 1 mol HNO2 ) = 0.0042 mol KOH
From the formula we can see that there is 1 mole of KOH present per 1 moles of HNO2, in a 1 : 1 ratio. As expected the number of moles of each should be the same,
Step 3 : Now we can calculate the volume of KOH knowing it's moles, and molar mass ( 0.570 M ).
Volume of KOH = 0.0042 mol
( 1 L / 0.570 mol )
( 1000 mL / 1 L ) = 7.37 mL of KOH
The reaction CFCl3 + UV Light -> CFCl2 + Cl does not need another reactant as with CFCl3 because the reaction itself is reactive to light. Note that there are reactions that are sensitive to light to form products and when this type of reaction are not exposed to light, no reaction occurs.
Answer:
Yes
Explanation:
As long as its a solid, you can count it. It will be hard, but possible.