Answer:
Step-by-step explain
Find the horizontal asymptote for f(x)=(3x^2-1)/(2x-1) :
A rational function will have a horizontal asymptote of y=0 if the degree of the numerator is less than the degree of the denominator. It will have a horizontal asymptote of y=a_n/b_n if the degree of the numerator is the same as the degree of the denominator (where a_n,b_n are the leading coefficients of the numerator and denominator respectively when both are in standard form.)
If a rational function has a numerator of greater degree than the denominator, there will be no horizontal asymptote. However, if the degrees are 1 apart, there will be an oblique (slant) asymptote.
For the given function, there is no horizontal asymptote.
We can find the slant asymptote by using long division:
(3x^2-1)/(2x-1)=(2x-1)(3/2x+3/4-(1/4)/(2x-1))
The slant asymptote is y=3/2x+3/4
Answer:
d
Step-by-step explanation:
43.55 rounds the tenth up because it has a hundredth of five
10.5 divided by 8 should be 1.3125
Answer:
x = 0
, y = 7/6
Step-by-step explanation:
Solve the following system:
{18 y - 12 x = 21
6 x - 9 = -9
In the second equation, look to solve for x:
{18 y - 12 x = 21
6 x - 9 = -9
Add 9 to both sides:
{18 y - 12 x = 21
6 x = 0
Divide both sides by 6:
{18 y - 12 x = 21
x = 0
Substitute x = 0 into the first equation:
{18 y = 21
x = 0
In the first equation, look to solve for y:
{18 y = 21
x = 0
Divide both sides by 18:
{y = 7/6
x = 0
Collect results in alphabetical order:
Answer: {x = 0
, y = 7/6