The graph shows the maximum residual is ...
◉ Data point (10, 10); Residual = 4.50_____
Apparently, this question makes no use of the line of best fit.
Answer:
6
Step-by-step explanation:
2x-m
When you substitue in the values for x and m:
2(4)-2
Now you can solve the equation:
2(4)-2
8-2
6
So this leads to the answer
2x-m=6 or 2(4)-2=6
Answer:
d(x) = √[(x - 2)² + (3x - 1)²]
Step-by-step explanation:
The distance between two points with coordinates (x₁, y₁) and (x₂, y₂) is given as
d = √[(x₂ - x₁)² + (y₂ - y₁)²]
So, the distance between point (2,0) and a point (x,y)
d = √[(x - 2)² + (y - 0)²]
d = √[(x - 2)² + (y)²]
But the point (x,y) is on the line y = 3x - 1
We can substitute for y in the distance between points equation.
d(x) = √[(x - 2)² + (3x - 1)²]
QED!
Answer:
Probability that component 4 works given that the system is functioning = 0.434 .
Step-by-step explanation:
We are given that a parallel system functions whenever at least one of its components works.
There are parallel system of 5 components and each component works independently with probability 0.4 .
Let <em>A = Probability of component 4 working properly, P(A) = 0.4 .</em>
<em>Also let S = Probability that system is functioning for whole 5 components, P(S)</em>
Now, the conditional probability that component 4 works given that the system is functioning is given by P(A/S) ;
P(A/S) = {Means P(component 4 working and system also working)
divided by P(system is functioning)}
P(A/S) = {In numerator it is P(component 4 working) and in
denominator it is P(system working) = 1 - P(system is not working)}
Since we know that P(system not working) means that none of the components is working in system and it is given with the probability of 0.6 and since there are total of 5 components so P(system working) = 1 -
.
Hence, P(A/S) =
= 0.434.
Answer:
4
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Step-by-step explanation:
<u>Step 1: Define</u>
a = 3, b = 5, c = 1
b - c
<u>Step 2: Evaluate</u>
- Substitute: 5 - 1
- Subtract: 4