Answer:
D. They have the same y-intercep
Step-by-step explanation:
Before the comparison will be efficient, let's determine the equation of the two points and the x intercept .
(–2, –9) and (4, 6)
Gradient= (6--9)/(4--2)
Gradient= (6+9)/(4+2)
Gradient= 15/6
Gradient= 5/2
Choosing (–2, –9)
The equation of the line
(Y+9)= 5/2(x+2)
2(y+9)= 5(x+2)
2y +18 = 5x +10
2y =5x -8
Y= 5/2x -4
Choosing (4, 6)
The equation of line
(Y-6)= 5/2(x-4)
2(y-6) = 5(x-4)
2y -12 = 5x -20
2y = 5x-8
Y= 5/2x -4
From the above solution it's clear that the only thing the both equation have in common to the given equation is -4 which is the y intercept
Total $129
129 - 24 = 105
105 / 3 = 35
Scot saves $35 last month
Answer:
D
Step-by-step explanation:
a- Multiply the square of 7/2 by 3.14
b-Multiply 36 and 36
c-Multiply 7 and 7
d-Multiply the square of 36 by 3.14
Greeting to you! My name is Cecille and I’m here to answer that question
For more explanation, please see the attachment
Step-by-step explanation:
Given :
Given that lines a and b are parallel, angles 1 and 5 are congruent because they are corresponding angles, and angles 1 and 4 are congruent because they are vertical angles
To find : by which property are angles 4 and 5 congruent
Solution :
We know that if two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.
Also, we know that if two things are equal to the same thing then they are equal to each other . In this case, we can say that if two angles are congruent to a third angle, then they are congruent to each other. As angles 4 and 5 are both congruent to angle 1, they are congruent to each other but angles 4 and 5 are alternate interior angles. So, if parallel lines have a transversal, alternate interior angles are congruent.