The answer would be the amino group and the carboxyl group
hope this helpssss
(3) Gamma has the greatest penetration power. Alpha has low and both beta and positron have medium. Hope I helped :)
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:
E) Intramolecular bond angles change
Explanation:
Infrared Radiation:
IR is electromagnetic radiations. The wavelength i.e. 700nm to 1000 mm of infrared is longer than invisible light and Its frequency is lower than light, that's why it is invisible to light.
- When IR radiation strike the molecule it absorbed by this molecule.
- This radiation used to identify and study chemicals.
- Infrared radiation interact with intra-bonds of the molecule.
- Bonds in the molecules have vibrational translational and rotational movements
- Due to these vibration, rotation and translation movement it absorb a radiation of specific frequency and wavelength
- These movements of bond are very small and absorbs radiations of very low frequency
- So when Infrared light or radiation absorbed the intra-bonds of the molecule get affected and angles of these bonds changes.
- As the frequency of the absorbed radiation matches the frequency of the bond that vibrates.
So
The correct option is option E
E) Intramolecular bond angles change
* Note:
it couldn't be option A as the frequency of IR is not enough to rotate a whole molecule
It Couldn't be option B as IR rations are electromagnetic radiation of longer wave length so it one can not see it with light so how it will glow a molecule
It also not could be the option C as for the excitation of electrons require much higher energy.
It also not the option D as nuclear magnetic spin is associated with nuclear magnetic radiation that are much different from IR.
The shape of the molecule will determine the direction of each of the individual bond dipoles, and thus, will always play a role in determining the polarity of the molecule as a whole.