Answer:
a. Change of state
Explanation:
Because you will see that the state has changed
Answer:
Yes
Explanation:
Np²³⁷ → He⁴ + Am²³³
The given nuclear equation is balanced. Np²³⁷ undergoes alpha decay and produce alpha particle and Am²³³.
Properties of alpha radiation:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number 4 less than and atomic number 2 less than the starting atom.
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴ + energy
Answer:
2.03
Explanation:
Let's <u>assume we have 1 L of the solution</u>:
- There would be 2.07 ethylene glycol moles.
- The solution would weigh (1000 mL * 1.02 g/mL) = 1020 g.
With that information we can <u>calculate the molality</u>:
- molality = moles of solute / kg of solvent
- molality = 2.07 moles / (1020 ÷ 1000) = 2.03 m
Keep in mind that this is only an estimate, as we used the kg of the solution and not of the solvent.
Answer:
8.3 × 10³ mL
Explanation:
Step 1: Calculate the mass of water that contains 100 mg of Pb
The concentration of Pb in the sample is 0.0012% by mass, that is, there are 0.0012 g of Pb every 100 g of water. The mass of water that contains 100 mg (0.100 g) of Pb is:
0.100 g Pb × 100 g Water/0.0012 g Pb = 8.3 × 10³ g Water
Step 2: Calculate the volume corresponding to 8.3 × 10³ g of water
Since the solution is diluted, we will assume the density of the sample is equal than the density of water (1 g/mL).
8.3 × 10³ g × 1 mL/1 g = 8.3 × 10³ mL
Answer:
x = 10/7
Explanation:
2(x + 2) - 4(2x - 3) = 4(2x - 1),
2x + 4 - 8x + 12 = 8x - 4,
-6x + 16 = 8x - 4,
20 = 14x,
x = 20/14 or 10/7