Solution:
Original Population of elk= 1537
Population after a year =1537 × 1.076
Let rate at which Population of elk is increasing = R %
Let In the beginning the population of elk= P
t= Time after which population is to be found
E(x)=Population of elk after time t,that is E(0)=P
So, Writing the formula at the rate which population of elk is increasing:
⇒E(x)= ![P(1 +\frac{R}{100})^t](https://tex.z-dn.net/?f=P%281%20%2B%5Cfrac%7BR%7D%7B100%7D%29%5Et)
E(1)= 1537
⇒1537= ![P(1 +\frac{R}{100})^1](https://tex.z-dn.net/?f=P%281%20%2B%5Cfrac%7BR%7D%7B100%7D%29%5E1)
1537= ![P(1 +\frac{R}{100})](https://tex.z-dn.net/?f=P%281%20%2B%5Cfrac%7BR%7D%7B100%7D%29)
E(2)= 1537 × 1.076=1653.812
⇒ 1653.812= ![1537(1 +\frac{R}{100})^1](https://tex.z-dn.net/?f=1537%281%20%2B%5Cfrac%7BR%7D%7B100%7D%29%5E1)
![\frac{1653.812}{1537}=(1 +\frac{R}{100})^1\\\\ (1.076) =(1 +\frac{R}{100})\\\\ 1.076-1=\frac{R}{100}\\\\ 0.076 \times 100= R \\\\ R= 7.6](https://tex.z-dn.net/?f=%5Cfrac%7B1653.812%7D%7B1537%7D%3D%281%20%2B%5Cfrac%7BR%7D%7B100%7D%29%5E1%5C%5C%5C%5C%20%281.076%29%20%3D%281%20%2B%5Cfrac%7BR%7D%7B100%7D%29%5C%5C%5C%5C%201.076-1%3D%5Cfrac%7BR%7D%7B100%7D%5C%5C%5C%5C%200.076%20%5Ctimes%20100%3D%20R%20%5C%5C%5C%5C%20R%3D%207.6)
E(9)= 1537 ![\times(1+\frac{R}{100})^8](https://tex.z-dn.net/?f=%5Ctimes%281%2B%5Cfrac%7BR%7D%7B100%7D%29%5E8)
As P is population when t=0, so we have to find population after 9 years , as
is population when t=1,so considering
as initial population, so, t=8
E(9)= ![1537 \times (1.076)^8](https://tex.z-dn.net/?f=1537%20%5Ctimes%20%281.076%29%5E8)
= 1537 × 1.796
= 2761.6716
= 2761.68 (Approx)