The energy goes from electric energy and gets converted into thermal energy.
The wavelength of light is
given as 463 nm or can also be written as 463 x 10^-9 m. [wavelength = ʎ]
We know that the speed of
light is 299 792 458 m / s or approximately 3 x 10^8 m / s. [speed of
light = c]
Given the two values, we can calculate
for the frequence (f) using the formula:
f = c / ʎ
Substituting the given
values:
f = (3 x 10^8 m / s) / 463 x
10^-9 m
f = 6.48 x 10^14 / s = 6.48 x
10^14 s^-1
<span>f = 6.48 x 10^14 Hz</span>
Answer:
a) 6.4 kJ
b) 43.4 kJ
Explanation:
a)
= Heat absorbed = 37 kJ
= Coefficient of performance = 5.8
= Work done
Heat absorbed is given as
=
37 = (5.8)
= 6.4 kJ
b)
= work per cycle required
=
+
= 37 + 6.4
= 43.4 kJ
Answer:
19.5°
Explanation:
The energy of the mass must be conserved. The energy is given by:
1) 
where m is the mass, v is the velocity and h is the hight of the mass.
Let the height at the lowest point of the be h=0, the energy of the mass will be:
2) 
The energy when the mass comes to a stop will be:
3) 
Setting equations 2 and 3 equal and solving for height h will give:
4) 
The angle ∅ of the string with the vertical with the mass at the highest point will be given by:
5) 
where l is the lenght of the string.
Combining equations 4 and 5 and solving for ∅:
6) 
The magnitude of the displacement of the car from the starting point to halfway around the track is 256 m.
Answer:
Explanation:
Since the race track is a circular track, the distance for one lap will be equal to the circumference of the circular track. And the circumference will be equal to the circumference of the circle.
Since the radius of the track is given as 200 m, then the circumference of the circular track will be
Circumference = 2πr = 2 × 3.14 × 200
So the circumference of the circular track = 1256 m.
So the starting point or position of the track is considered as zero and if the car has traveled half way means, the car has covered half of the circumference of the track.
As the circumference = 1256 m, then half of the circumference of the circle = 1256/2 = 256 m.
So the displacement is the measure of difference between the final position and initial position. As here the initial position is zero and the final position is the halfway around the track which is equal to 256 m.
Then Displacement = Final-Initial = 256-0= 256 m.
So the magnitude of the displacement of the car from the starting point to halfway around the track is 256 m.