Titty milk I think because it taste amazing so you can go 21km/h
Answer:
Rate of change of area will be 
Explanation:
We have given rate of change of radius 
Radius of the circular plate r = 52 cm
Area is given by 
So 
Puting the value of r and 

So rate of change of area will be 
Acceleration = (change in speed) / (time for the change)
Change in speed = (speed at the end) minus (speed at the beginning.
The cart's acceleration is
(0 - 2 m/s) / (0.3 sec)
= ( -2 / 0.3 ) (m/s²) = -(6 and 2/3) m/s² .
Newton's second law of motion says
Force = (mass) x (acceleration) .
For this cart: Force = (1.5 kg) x ( - 6-2/3 m/s²)
= ( - 1.5 x 20/3 ) (kg-m/s²)
<span> = </span>- 10 newtons .
<span>The force is negative because it acts opposite to the direction </span>
<span>in which the cart is moving, it causes a negative acceleration, </span>
<span>and it eventually stops the cart.</span>
The question is incomplete, the concentration of qam and humulin is not given unless R is used concentration
Complete question:
A physician orders Humulin 50/50 44 units and Humulin N 40 units qam and Humulin R 35 units ac evening meal subcutaneously. How many total units of insulin are administered each morning?
Answer:
the total units of insulin admistered each morning
= 22 units of qam and humulin
Explanation:
given
44 units and Humnlin N
with concentration 50/100 = 1/2 = 0.5
∴ 44 × 0.5 ≈ 22 units in the morning
regular insulin administered each day
(22 + 35)units of qam and humulin
= 57units
Answer:
Same magnitude of the 10 nc charge cause the electric field is external.
Explanation:
To do a better explanation, let's go and suppose we have an electric field of, 1300 N/C with a 10 nC charge.
As the system we are talking about is really big, and the charge is small, we can assume always if the charge is sitting right in the same point where the electric field is, then, the electric field would not suffer any kind of alteration in it's value. Therefore, no matter what value of the charge is sitting here, the electric field is independent of the charge, so it would not feel any alteration. However, the force that the charge is feeling would be stronger than in the first case.
F = qE
If charge is doubled, then the force would be bigger in the second case than in the first case, but electric field remain the same value.