High temperature and pressure produce the highest rate of reaction. However, this must be balanced with the high cost of the energy needed to maintain these conditions. Catalysts increase the rate of reaction without affecting the yield. This can help create processes which work well even at lower temperatures.
I hope this helps you.
Answer:
potassium
The third alkali metal is K (potassium). The atomic number of K (potassium) is 19. Thus, the atomic number of third alkali metal is 19
Explanation:
Answer:
The percent isotopic abundance of C- 12 is 98.93 %
The percent isotopic abundance of C- 13 is 1.07 %
Explanation:
we know there are two naturally occurring isotopes of carbon, C-12 (12u) and C-13 (13.003355)
First of all we will set the fraction for both isotopes
X for the isotopes having mass 13.003355
1-x for isotopes having mass 12
The average atomic mass of carbon is 12.0107
we will use the following equation,
13.003355x + 12 (1-x) = 12.0107
13.003355x + 12 - 12x = 12.0107
13.003355x- 12x = 12.0107 -12
1.003355x = 0.0107
x= 0.0107/1.003355
x= 0.0107
0.0107 × 100 = 1.07 %
1.07 % is abundance of C-13 because we solve the fraction x.
now we will calculate the abundance of C-12.
(1-x)
1-0.0107 =0.9893
0.9893 × 100= 98.93 %
98.93 % for C-12.
Answer:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations.The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
An element is made up of an atom, a molecule is a bunch of elements, and a comping is a bunch of molecules