Answer:
by statistical analyses, especially by determining the p-value
Explanation:
In general, observations and results obtained from experimental procedures are subjected to a statistical test to check the robustness of the working hypothesis. The p-value is the most widely used statistical index in order to test such observations and results. The p-value is the statistical probability of obtaining extreme observed results when the null hypothesis is considered correct. A p-value lesser than 0.05 generally is considered statistically significant and then the null hypothesis can be rejected. In consequence, a very low p-value (which is obtained by statistical analysis of the observations and results), indicates that there is strong evidence in support of the alternative hypothesis.
Answer:

Explanation:
According to the boiling point elevation law described by the equation
, the increase in boiling point is directly proportional to the van 't Hoff factor.
The van 't Hoff factor for nonelectrolytes is 1, while for ionic substances, it is equal to the number of moles of ions produced when 1 mole of salt dissolves.
would produce 2 moles of ions per 1 mole of dissolved substance, sodium and bromide ions.
is insoluble in water, so it would barely dissociate and wouldn't practically change the boiling point.
would dissociate into 3 moles of ions per 1 mole of substance, two potassium cations and one sulfide anion.
is a gas, it would form some amount of carbonic acid when dissolved, however, carbonic acid is molecular and would yield i value of i = 1.
Therefore, potassium sulfide would raise a liquid's boiling point the most if all concentrations are equal.
A) a column
example: earth alkaline metals
Answer:
1.373 mol H₂O
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
24.75 g H₂O
<u>Step 2: Identify Conversions</u>
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Convert</u>
<u />
= 1.37347 mol H₂O
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig fig rules and round.</em>
1.37347 mol H₂O ≈ 1.373 mol H₂O