First of all there nothing exists something like SSA congruence criterion, It is SAS Congruence where the sides of a Triangle and the angle between them is exactly same to the other two sides and angle between them of another triangle.
So the correct option is D.
Explanation:
If the Triangle has two sides equal, so the two angles there are equal. Also the other angle be some other definite angle. So
45+x+x=180(Considering definite angle to be 45)
2x=135
x=67.5
So there is only one solution to the triangle.
Answer: 


Explanation:
Entropy is the measure of randomness or disorder of a system.
A system has positive value of entropy if the disorder increases and a system has negative value of entropy if the disorder decreases.
1. 
As 4 moles of gaseous reactants are changing to 2 moles of gaseous products, the randomness is decreasing and the entropy is negative
2. 
As 9 moles of gaseous reactants are changing to 10 moles of gaseous products, the randomness is increasing and the entropy is positive.
3. 
As 1 mole of solid reactants is changing to 2 moles of gaseous products, the randomness is increasing and the entropy is positive.
4. 
As 4 moles of gaseous reactants is changing to 5 moles of gaseous products, the randomness is increasing and the entropy is positive
5. 
As 4 moles of gaseous reactants is changing to 1 moles of gaseous products, the randomness is decreasing and the entropy is negative.
Answer:
0.14 M
Explanation:
To determinate the concentration of a new solution, we can use the equation below:
C1xV1 = C2xV2
Where C is the concentration, and V the volume, 1 represents the initial solution, and 2 the final one. So, first, the initial concentration is 1.50 M, the initial volume is 55.0 mL and the final volume is 278 mL
1.50x55.0 = C2x278
C2 = 0.30 M
The portion of 139 mL will be the same concentration because it wasn't diluted or evaporated. The final volume will be the volume of the initial solution plus the volume of water added, V2 = 139 + 155 = 294 mL
Then,
0.30x139 = C2x294
C2 = 0.14 M
Explanation:
(a) The given data is as follows.
Pressure on top (
) = 140 bar =
(as 1 bar =
)
Temperature =
= (15 + 273) K = 288 K
Density of gas = 


= 0.4548

=
= 
Hence, pressure at the natural gas-oil interface is
.
(b) At the bottom of the tank,

= 2.206 \times 10^{7} Pa + 700 \times 9.81 \times (6000 - 4700)[/tex]
= 
= 309.8 bar
Hence, at the bottom of the well at
pressure is 309.8 bar.