Answer:
1.) 274.5v
2.) 206.8v
Explanation:
1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.
The potential difference and charge across EACH capacitor will be
V = Voe
Where Vo = initial voltage
e = natural logarithm = 2.718
For the first capacitor 2.50 µF,
V = Vo × 2.718
746 = Vo × 2.718
Vo = 746/2.718
Vo = 274.5v
To calculate the charge, use the below formula.
Q = CV
Q = 2.5 × 10^-6 × 274.5
Q = 6.86 × 10^-4 C
For the second capacitor 6.80 µF
V = Voe
562 = Vo × 2.718
Vo = 562/2.718
Vo = 206.77v
The charge on it will be
Q = CV
Q = 6.8 × 10^-6 × 206.77
Q = 1.41 × 10^-3 C
B.) Using the formula V = Voe again
165 = Vo × 2.718
Vo = 165 /2.718
Vo = 60.71v
Q = C × 60.71
Q = C
I believe the answer would be mass. Low mass stars and medium mass stars often become white dwarfs when they die while high mass stars explode in violent explosions called supernovas and usually leave behind a black hole or a neutron star.
Taking the copper wire, he has to wind it around the nail made of iron. After which, he then connect both ends of the copper wire to the battery, so an electric charge travels through the wire. This is the basic electromagnet. Since a current is now flowing through the wire, a magnetic field is produced. Placing the electromagnet near the mixture of copper and iron, the magnet should attract the pieces of iron, as iron is more magnetic compared to copper. This is done over a period of time, so that only the copper pieces are left in the mixture.