Calcium is used to isolate Rb from molten RbX because calcium has a smaller atomic radius than rubidium.
A chemical element's atomic radius, which is typically the average or typical distance between the nucleus's core and the outermost isolated electron, serves as a gauge for the size of an atom. There are numerous non-equivalent definitions of atomic radius since the border is not a clearly defined physical entity. Van der Waals radius, ionic radius, metallic radius, and covalent radius are the four most frequently used definitions of atomic radius. Atomic radii are typically measured in a chemically bound condition since it is challenging to isolated individual atoms in order to measure their radii individually.
Learn more about atomic radius here:
brainly.com/question/13607061
#SPJ4
Sodium. 11
Carbon. 12
Hydrogen 1
Oxygen 2
Fluuorine. 14
Boron. 5
Lithium. 6
Helium 3
Phosphorus 15
Sulfur 6
Li2O is the formula for <span> lithium oxide</span>
The balanced equation for the above reaction is;
2K + Cl₂ ---> 2KCl
Stoichiomtery of K to KCl is 2:2
Potassium is the limiting reactant which is fully consumed in the reaction. The amount of product formed depends on amount of limits reactant present.
Number of moles of K reacted - 6.75 g/ 39 g/mol = 0.17 mol
Therefore number of KCl moles formed - 0.17 mol
Mass of KCl formed - 0.17 mol x 74.5 g/mol = 12.67 g
Radio waves
Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation. In order from highest to lowest energy, the sections of the EM spectrum are named: gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, and radio waves.