The answer is:
A. <span>It involves atoms. </span>
Answer:
a) The mechanism of the reaction is the Elimination Bimolecular or E2.
b) Steps for the mechanism of this reaction is given as follows,
c) Reaction rate = K[Organic compound][
].
Explanation:
a) The mechanism of the reaction is the Elimination Bimolecular or E2.
c) This is an E2 reaction, so it depends on the concentration of both substrate and reactant. If we increase the concentration of
, the reaction rate will be increased.
Reaction rate = K[Organic compound][
].
b) Steps for the mechanism of this reaction is given as follows,
Answer: What is one source of thermal energy in the interior of the Earth?
Explanation:
Answer:
The volume would be; 136.17 ml
Explanation:
Volume V1 = 150 mL
Temperature T1 = 20°C + 273 = 293 K
Pressure P1 = 758 - 17.54 = 740.46 torr
At STP;
Volume V2 = ?
Pressure P2 = 760 torr
Temperature T2 = 273 K
Using the general gas equation;
P1V1 / T1 = P2V2 / T2
Making V2 subject of formulae;
V2 = P1V1T2 / T1P2
Inserting the values we have;
V2 = 740.46 * 150 * 273 / 293 * 760
V2 = 136.17 ml
1. 12 L = 12 dm³
2. 3.18 g
<h3>Further explanation</h3>
Given
1. Reaction
K₂CO₃+2HNO₃⇒ 2KNO₃+H₂O+CO₂
69 g K₂CO₃
2. 0.03 mol/L Na₂CO₃
Required
1. volume of CO₂
2. mass Na₂CO₃
Solution
1. mol K₂CO₃(MW=138 g/mol) :
= 69 : 138
= 0.5
mol ratio of K₂CO₃ : CO₂ = 1 : 1, so mol CO₂ = 0.5
Assume at RTP(25 C, 1 atm) 1 mol gas = 24 L, so volume CO₂ :
= 0.5 x 24 L
= 12 L
2. M Na₂CO₃ = 0.03 M
Volume = 1 L
mol Na₂CO₃ :
= M x V
= 0.03 x 1
= 0.03 moles
Mass Na₂CO₃(MW=106 g/mol) :
= mol x MW
= 0.03 x 106
= 3.18 g