From wave speed formula, period is 1.96 × 10^-15 seconds per cycle and the frequency is 5.1 × 10^14 Hertz
<h3>
What is Frequency ?</h3>
The frequency of a wave is the number of complete revolution per second made by a vibrating body.
Given that the wavelength of the yellow light from a sodium flame is 589 nm. This light originated from a sodium atom in the hot flame.
(a) In the sodium atom from which this light originated, the period of the simple harmonic motion which was the source of this electromagnetic wave will be found by using the formula
v = λ/T
Where
- v = speed of light = 300,000,000 m/s
- λ = wavelength = 589 × 10^-9 m
Substitute all the parameters
300000000 = 589 × 10^-9/T
T = 589 × 10^-9/300000000
T = 1.96 × 10^-15 seconds per cycle.
(b) The frequency of this light wave is the reciprocal of its period. That is,
F = 1/T
F = 1/1.96 × 10^-15
F = 5.1 × 10^14 Hertz
Therefore, the period of the wave is 1.96 × 10^-15 seconds per cycle and its frequency is 5.1 × 10^14 Hertz
Learn more about Light Wave here: brainly.com/question/10728818
#SPJ1
<span>Like charges repel and opposite charges attract.
The further away two charged objects are the weaker the electrical force between them.
The closer two charged objects are the stronger the electrical force between them.
Hope this helps :)</span>
Answer:
μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
W₁ x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
cos 60 = x / L
where L is the length of the ladder
x = L cos 60
sin 60 = y / L
y = L sin60
the horizontal distance of man is
cos 60 = x2 / 7.0
x2 = 7 cos 60
we substitute
m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
fr = (735 + 2450) / 8.66
fr = 367.78 N
the friction force has the expression
fr = μ N
write the translational equilibrium equation
N - W₁ -W₂ = 0
N = m₁ g + W₂
N = 30 9.8 + 700
N = 994 N
we clear the friction force from the eucacion
μ = fr / N
μ = 367.78 / 994
μ = 0.37
<span>Heat from the Sun is transferred to the sand without direct contact. This heat is then transferred to your feet by direct contact.</span>
Work done is equal to force by distance; so you take the force exerted, in newtons, and multiply that by the direction it's moved (from the starting point in a line, not along the path it's taken.)