Well they would definitely rip up the flooring and replace it
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
The answer is B. is the energy source of stars.
Fission is the type of nuclear energy simulated on Earth, as it is the one used to generate electricity. Fusion, on the other hand, is much more complicated to achieve because it requires extremely hot temperatures compared to fission. Fusion involves the combination of two hydrogen atoms to make helium, which releases a lot of energy. Stars such as the sun, exhibit fusion with its very hot temperature and abundant source of hydrogen.