<span>0.925 grams if using hydrochloric acid in the reaction.
0.462 grams if using sulfuric acid in the reaction.
0.000 grams if using nitric acid in the reaction.
Assuming you're using HCl or a similar acid for this reaction, the equation for the reaction is:
Zn + 2 HCl ==> ZnCl2 + H2
So each mole of zinc used, produces 1 mole of hydrogen gas, or 2 moles of hydrogen atoms. So we need to look up the atomic weights of both zinc and hydrogen.
Atomic weight zinc = 65.38
Atomic weight hydrogen = 1.00794
Moles zinc = 30.0 g / 65.38 g/mol = 0.458855919 mol
Since we produce 2 moles of hydrogen atoms per mole of zinc, multiply by 2 and the atomic weight of hydrogen to get the mass of hydrogen produced. So
0.458855919 * 2 * 1.00794 = 0.92499847 grams.
Rounding to 3 significant figures gives 0.925 grams.
To show the assumption of the acid used, the balanced equation for sulfuric acid would be
Zn2 + H2SO4 ==> Zn(SO4)2 + H2
Which means that for every mole of zinc used, 1 mole of hydrogen gas is generated (half that produced via hydrochloric acid).
If nitric acid were used, the reaction is
4Zn + 10HNO3 ==> 4Zn(NO3)2 + N2O + 5H2O
Which means that NO hydrogen gas is generated.
The only justification for assuming hydrochloric acid is used is that it's a fairly common acid that's easy to obtain. But as shown above with 2 alternative acids, the amount of hydrogen gas generated is very dependent upon the exact chemical reaction occurring and asking "How many grams of hydrogen are produced if 30.0 g of zinc reacts?" is a rather silly question unless you specify EXACTLY what the reaction is.</span>
<span>Benzoin<span> is an organic compound with the formula PhCH(OH)C(O)Ph. It is
a hydroxy ketone attached to two phenyl groups.</span><span>
To answer your question, </span><span>the balanced oxidation-reduction reaction equation for the
oxidation of benzoin by ammonium nitrate is:
</span>2Ph-C(OH)-C(O)-Ph+NH4NO3
--> 2Ph-C(O)-C(O)-Ph + N2 + 3H2O.</span>
<span>
</span><span>I hope this helps and if you have any
further questions, please don’t hesitate to ask again.</span>
Answer:
(a) The rate of formation of K2O is 0.12 M/s.
The rate of formation of N2 is also 0.12 M/s
(b) The rate of decomposition of KNO3 is 0.24 M/s
Explanation:
(a) From the equation of reaction, the mole ratio of K2O to O2 is 2:5.
Rate of formation of O2 is 0.3 M/s
Therefore, rate of formation of K2O = (2×0.3/5) = 0.12 M/s
Also from the equation of reaction, mole ratio of N2 to O2 is 2:5.
Rate of formation of N2 = (2×0.3/5) = 0.12 M/s
(b) From the equation of reaction, mole ratio of KNO3 to O2 is 4:5.
Therefore, rate of decomposition of KNO3 = (4×0.3/5) = 0.24 M/s
<span>THE HIGHEST CONCENTRATION OF HYDROGEN IONS IS LOCATED IN THE INTER-MEMBRANE SPACE. HYDROGEN IONS REACH THE INTER-MEMBRANE SPACE THROUGH PROTEIN CHANNELS EMBEDDED IN THE MITOCHONDRIAL MEMBRANE. THE MAIN FUNCTION OF INTER MEMBRANEIS OXIDATIVE PHOSPHORLATON. ENERGY IS REQUIRED TO MOVE THE HYDROGEN IONS ACROSS THE MEMBRANE BECAUSE THE HYDROGEN IONS ARE MOVING AGAINST THE CONCENTRATION GRADIENT. H+ GOES AGAINST THE CONCENTRATION GRADIENT THE USE OF THE GRADIENT TO DRIVE ATP SYNTHASE. HYDOGEN IONS DRIVE ATP SYNTHASE IN PHTOSYNTHESIS. THIS HAPPENS WHEN HYDROGEN IONS GET PUSHED ACROSS THE MEMBRANE CREATING A HIGH CONCENTRATION INSIDE THE THYLAKOID.</span>
Answer:
Explanation: obtain and use energy, make new cells, exchange materials, eliminate wastes