Answer:
5.5 years old.
Step-by-step explanation:
Let D represent present age of Robert's dog and C represent present age of Karen's cat.
We have been given that Robert's dog is 4 years older than Karen's cat. We can represent this information in an equation as:

We are also told that in 3 years, the sum of the ages of Robert's dog and Karen's cat will be 13. After 3 years age of dog and cat would be
and
respectively.
We can represent this information in an equation as:

From equation (1), we will get:

Upon substituting this value in equation (2), we will get:

Combine like terms:





Therefore, Robert's dog is 5.5 years old right now.
Answer:
m=-1
Step-by-step explanation:
2.3-5m=9.8+2.5m
+5m=9.8+5m
2.3=9.8+7.5m
-9.8 -9.8
-7.5=7.5m
/7.5 /7.5
-1=m
Answer:
5
Step-by-step explanation:
0 is 10ths 5 is 100ths
Answer:
1. Use the distributive property to get rid of any parenthesis.
2. Combine like terms
3. Move all variables to one side
4. Inverse operations