Answer:
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ is 4.11 × 10⁻³ grams
Explanation:
The number of particles in one mole of a substance id=s given by the Avogadro's number which is approximately 6.023 × 10²³ particles
Therefore, we have;
One mole of Cl₂ gas, which is a compound, contains 6.023 × 10²³ individual molecules of Cl₂
3.491 × 10¹⁹ molecules of Cl₂ is equivalent to (3.491 × 10¹⁹)/(6.023 × 10²³) = 5.796 × 10⁻⁵ moles of Cl₂
The mass of one mole of Cl₂ = 70.906 g/mol
The mass of 5.796 × 10⁻⁵ moles of Cl₂ = 70.906 × 5.796 × 10^(-5) = 4.11 × 10⁻³ grams
Therefore;
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ = 4.11 × 10⁻³ grams.
Answer:
6.93
Explanation:
correct me if verry wrong
There are four states of matter, solid, liquid, gas and plasma. Their formation is as when solid is heated it converts into liquid, liquid on heating converts into gases and gases on heating converts into plasma.
Plasma:
Plasma is the fourth state of matter. It is the highest energy state of matter.
Composition:
Plasma is made up of negatively charged and positively charged particles.
Result:
The answer to your question is Plasma.
I think it would be Kriptonite
The molar extinction coefficient is 15,200
.
The formula to be used to calculate molar extinction coefficient is -
A = ξcl, where A represents absorption, ξ refers molar extinction coefficient, c refers to concentration and l represents length.
The given values are in required units, hence, there is no need to convert them. Directly keeping the values in formula to find the value of molar extinction coefficient.
Rewriting the formula as per molar extinction coefficient -
ξ = 
ξ = 
Performing multiplication in denominator to find the value of molar extinction coefficient
ξ =
Performing division to find the value of molar extinction coefficient
ξ = 15,200 
Hence, the molar extinction coefficient is 15,200
.
Learn more about molar extinction coefficient -
brainly.com/question/14744039
#SPJ4