Newton’s first law because the airplane needs space to fully stop due to its inertia
Answer:
D. Both occur between objects independently whether they are in contact or not.
Explanation:
- The gravitational force is a force that is exerted between two (or more) objects having mass. This force is always attractive and its magnitude is given by

where G is the gravitational constant, m1 and m2 are the two masses, and r is the distance between the two masses.
- The electrical force is a force that is exerted between two (or more) objects having electrical charge. It can be either attractive or repulsive, depending on the sign of the two charges, and its magnitude is given by

where k is the Coulomb's constant, q1 and q2 are the two charges, and r the distance between the two charges.
Looking at both formulas, we see that the two forces are present even when the two objects are not in contact with each other (in fact, r can assume any value in the formula). They are said to be non-contact forces. Therefore, the correct option is
D. Both occur between objects independently whether they are in contact or not.
Answer: 10.3m/s
Explanation:
In theory and for a constant velocity the physics expression states that:
Eq(1): distance = velocity times time <=> d = v*t for v=constant.
If we solve Eq (1) for the velocity (v) we obtain:
Eq(2): velocity = distance divided by time <=> v = d/t
Substituting the known values for t=15s and d=155m we get:
v = 155 / 15 <=> v = 10.3
Explanation:
Understanding that stars are naturally quite hot, imagine I pulled a piece of hot iron from a furnace. It would glow a bright red, and then slowly fade to black as the iron cools.
White dwarfs glow for the same reason - they are HOT!