Kinetic energy = 1/2 × m × v^2
16 = 1/2 × m × 2^2
16 = 1/2 × m × 4
16 = 2 × m
16/2 = m
8 = m
so the mass is 8 kg
D. The table pushes up on the vase with the same amount of force as gravity pulling it down.
The Bohr's proposal for the angular momentum of an electron in Bohr's model of the hydrogen atom is:
L=(n*h)/(2π), where n is the number of the energy level and h is the Planck's constant. This equation shows us the quantization of angular momentum of the electron. So the correct answer is the second one: Planck's constant.
<span>A. Copper is a good conductor of electricity because its atoms have a loosely held electron in their outer shell that is able to move freely to other atoms.</span>
Explanation:
... in every interaction, there is a pair of forces acting on the two interacting objects. The size of the force on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.