<span>Adenosine triphosphate (ATP) consists of an adenosine molecule bonded to three phophate groups in a row. In a process called cellular respiration, chemical energy in food is converted into chemical energy that the cell can use, and stores it in molecules of ATP. This occurs when a molecule of adenosine diphosphate (ADP) uses the energy released during cellular respiration to bond with a third phosphate group, becoming a molecule of ATP. So the energy from cellular respiration is stored in the bond between the 2nd and 3rd phosphate groups of ATP. When the cell needs energy to do work, ATP loses its 3rd phosphate group, releasing energy stored in the bond that the cell can use to do work. Now its back to being ADP and is ready to store the energy from respiration by bonding with a 3rd phosphate group. ADP and ATP constantly convert back and forth in this manner.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
C. less dense than the coffee but more dense than the air above thecoffee.
Explanation:
Answer:
The wavelength is 3500 nm.
Explanation:
d= 
n= 1
θ= 30°
λ= unknown
Solution:
d sinθ = nλ
λ = 
λ = 3500 nm
Answer:
The correct statements would be
- Cyanobacteria allowed organisms that rely on oxygen to evolve.
- Cyanobacteria preceded the first photosynthetic organisms.
- Cyanobacteria produced excess oxygen.
Cyanobacteria, also termed as blue-green algae are the prokaryotes which are able to perform photosynthesis.
They were the major contributors of oxygen in the atmosphere and thus helped the organisms that rely on oxygen to evolve.
By the process of endosymbiosis, they lead to the origin of plants. The chloroplasts present in green plants is considered as the cyanobacteria living in the plant cell. It helps in photosynthesis and in return plants cell provides shelter to it.
It is believed that the oxygen released from early cyanobacteria reacted with dissolved iron ions to form iron oxide.