1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
12345 [234]
3 years ago
8

During a collision, a bus runs into a skateboarder inelastically. If the mass of the skateboarders is 70 kg and is moving at 12

m/s to the right, what is the final velocity of the skateboarder if the 2000 kg bus is traveling at 25 m/s to the left before the collision?
Physics
1 answer:
agasfer [191]3 years ago
5 0

The final velocity of the skateboarder is 23.75 m/s.

We can use conservation of momentum to calculate the magnitude of the final velocity.

Momentum before collision is equal to the momentum after collision

m1v1+m2v2=(m1+m2)v

here, v is final velocity of the skateboarder, assuming right side velocity as positive, and left side velocity as negative.

70*12+2000*(-25)=(70+2000)v

v=-23.75 m/s

Here, negative sign indicates that both skyboarder and bus will move in left direction.

You might be interested in
Wha is amplitde in sound
NemiM [27]

Answer:

The number of molecules displaced in a vibration makes the amplitude of a sound.

7 0
3 years ago
A freshly prepared sample of radioactive isotope has an activity of 10 mCi. After 4 hours, its activity is 8 mCi. Find: (a) the
Maurinko [17]

Answer:

(a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

Explanation:

Given that,

Activity R_{0}=10\ mCi

Time t_{1}=4\ hours

Activity R= 8 mCi

(a). We need to calculate the decay constant

Using formula of activity

R=R_{0}e^{-\lambda t}

\lambda=\dfrac{1}{t}ln(\dfrac{R_{0}}{R})

Put the value into the formula

\lambda=\dfrac{1}{4\times3600}ln(\dfrac{10}{8})

\lambda=0.0000154\ s^{-1}

\lambda=1.55\times10^{-5}\ s^{-1}

We need to calculate the half life

Using formula of half life

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{\lambda}

Put the value into the formula

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{1.55\times10^{-5}}

T_{\dfrac{1}{2}}=44.719\times10^{3}\ s

T_{\dfrac{1}{2}}=11.3\ hr

(b). We need to calculate the value of N₀

Using formula of N_{0}

N_{0}=\dfrac{3.70\times10^{6}}{\lambda}

Put the value into the formula

N_{0}=\dfrac{3.70\times10^{6}}{1.55\times10^{-5}}

N_{0}=2.38\times10^{11}\ nuclei

(c). We need to calculate the sample's activity

Using formula of activity

R=R_{0}e^{-\lambda\times t}

Put the value intyo the formula

R=10e^{-(1.55\times10^{-5}\times30\times3600)}

R=1.87\ mCi

Hence, (a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

4 0
3 years ago
A robot is on the surface of Mars. The angle of depression from a camera in the robot to a rock on the surface of Mars is 13.69
ra1l [238]

Answer:

The distance between the camera and the rock is 836.6 cm

Explanation:

A right triangle is formed where the hypotenuse (h) is the distance between the rock and the camera. One of the leg (l) is the distance between the camera and the surface. The angle between the hypotenuse and this leg is α = 90° - 13.69° = 76.31°. By definition:

cos α = adjacent/hypotenuse

cos(76.31) = 198.0/h

h = 198.0/cos(76.31)

h = 836.6 cm

3 0
3 years ago
What is the relationship between Newton's first law of motion and inertia?​
adelina 88 [10]

Explanation: Newton's first law of motion states that a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force. This is also known as the law of inertia. Inertia is the tendency of an object to remain at rest or remain in motion.

4 0
2 years ago
You wish to cool a 1.83 kg block of tin initially at 88.0°C to a temperature of 57.0°C by placing it in a container of kerosene
uranmaximum [27]

Answer:

0.273 liters are needed to accomplish this task without boiling.

Explanation:

The minimum boiling point of kerosene is 150\,^{\circ}C. According to this question, we need to determine the minimum volume of liquid such that heat received is entirely sensible, that is, with no phase change.

If we consider a steady state process and that energy interactions with surrounding are negligible, then we get the following formula by the Principle of Energy Conservation:

\rho_{k}\cdot V_{k}\cdot c_{k}\cdot (T-T_{k,o}) = m_{t}\cdot c_{t}\cdot (T_{t,o}-T) (1)

Where:

\rho_{k} - Density of kerosene, measured in kilograms per cubic meter.

V_{k} - Volume of kerosene, measured in cubic meters.

c_{k}, c_{t} - Specific heats of the kerosene and tin, measured in joule per kilogram-Celsius.

T_{k,o}, T_{t,o} - Initial temperatures of kerosene and tin, measured in degrees Celsius.

T - Final temperatures of the kerosene-tin system, measured in degrees Celsius.

Please notice that the block of tin is cooled at the expense of the temperature of the kerosene until thermal equilibrium is reached.

From (1), we clear the volume of kerosene:

V_{k} = \frac{m_{t}\cdot c_{t}\cdot (T_{t,o}-T)}{\rho_{k}\cdot c_{k}\cdot (T-T_{k,o})}

If we know that m_{t} = 1.83\,kg, c_{t} = 218\,\frac{J}{kg\cdot ^{\circ}C}, T_{t,o} = 88\,^{\circ}C, T_{k,o} = 24.0\,^{\circ}C, T = 57\,^{\circ}C, c_{k} = 2010\,\frac{J}{kg\cdot ^{\circ}C} and \rho_{k} = 820\,\frac{kg}{m^{3}}, then the volume of the liquid needed to accomplish this task without boiling is:

V_{k} = \frac{(1.83\,kg)\cdot \left(218\,\frac{J}{kg\cdot ^{\circ}C} \right)\cdot (88\,^{\circ}C-57\,^{\circ}C)}{\left(820\,\frac{kg}{m^{3}} \right)\cdot \left(2010\,\frac{J}{kg\cdot ^{\circ}C} \right)\cdot (57\,^{\circ}C-24\,^{\circ}C)}

V_{k} = 2.273\times 10^{-4}\,m^{3}

V_{k} = 0.273\,L

0.273 liters are needed to accomplish this task without boiling.

3 0
3 years ago
Other questions:
  • Calculate the speed of an 8.0 x 10^4 kg airliner with a kinetic energy of 1.1 x 10^9 J.
    9·1 answer
  • A 43-N crate is suspended from the left end of a plank. The plank weighs 21 N, but it is not uniform, so its center of gravity d
    11·1 answer
  • True or false: Black holes are invisible because they do not reflect light? A. true B. false
    10·1 answer
  • A wire is formed into a circle having a diameter of 11.1 cm and is placed in a uniform magnetic field of 2.79 mT. The wire carri
    15·1 answer
  • a driver brings a car to a full stop in 2.0 s. if the car was initially traveling at 22 m/s, what is the acceleration?
    9·1 answer
  • What happens when you pay bills using a computer
    7·2 answers
  • A smooth wooden 40.0 N block is placed on a smooth wooden table a force of 14.0N is required to keep the block moving at a const
    10·1 answer
  • A car is traveling clockwise around a circular racetrack of radius 1440m. When the car is at the northernmost point of the circl
    12·1 answer
  • SI Prefix Meaning
    8·1 answer
  • If a source of waves produces 30 waves per second, what is the frequency in hertz?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!