The answer is a inductive
Answer:
f = 12 cm
Explanation:
<u>Center of Curvature</u>:
The center of that hollow sphere, whose part is the spherical mirror, is known as the ‘Center of Curvature’ of mirror.
<u>The Radius of Curvature</u>:
The radius of that hollow sphere, whose part is the spherical mirror, is known as the ‘Radius of Curvature’ of mirror. It is the distance from pole to the center of curvature.
<u>Focal Length</u>:
The distance between principal focus and pole is called ‘Focal Length’. It is denoted by ‘F’.
The focal length of the spherical (concave) mirror is approximately equal to half of the radius of curvature:

where,
f = focal length = ?
R = Radius of curvature = 24 cm
Therefore,

<u>f = 12 cm</u>
Answer:
a= - 6.667 m/s²
Explanation:
Given that
The initial speed of the box ,u= 20 m/s
The final speed of the box ,v= 0 m/s
The distance cover by box ,s= 30 m
Lets take the acceleration of the box = a
We know that
v²= u ² + 2 a s
Now by putting the values in the above equation we get
0²=20² + 2 a x 30

a= - 6.667 m/s²
Negative sign indicates that velocity and acceleration are in opposite direction.
Therefore the acceleration of the box will be - 6.667 m/s² .
Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components


The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components


So we have enough information to solve for the components of the acceleration vector,
and
:


The acceleration vector then has direction
where

Answer:
A plant
Explanation:
because animals don't have cell walls, and fungus and bacteria dont have chloroplasts