The pertinent equation here is F=ma. You haven't shared the mass of the box, so I will use M to represent that mass.
Then F = M(<span>2.3 m/s^2) (answer)</span>
Answer:
The K.E is maximum when the child is at the vertical position and the P.E is maximum at the extreme deviated position from the vertical.
Explanation:
- A child is swinging on swing up and down has both kinetic and potential energy.
- The total mechanical energy of the system is conserved throughout the system. At any instant the total mechanical energy is given by,
E = K.E + P.E
- The K.E is maximum when the child is at the vertical position.
- The P.E is maximum at the extreme deviated position from the vertical.
- And when K.E is maximum P.E becomes minimum and vice versa as per the law of conservation of energy.
Answer:
P = 1000000[Pa] = 1000 [kPa]
Explanation:
To solve this problem we must use the definition of pressure, which is equal to the relationship of force over area.

where:
P = pressure [Pa] (units of pascals)
F = force = 100 [N]
A = area = 100 [mm²]
But first we must convert the units from square millimeters to square meters.
![A=100[mm^{2}]*\frac{1^{2} m^{2} }{1000^{2}mm^{2} } =0.0001[m^{2} ]](https://tex.z-dn.net/?f=A%3D100%5Bmm%5E%7B2%7D%5D%2A%5Cfrac%7B1%5E%7B2%7D%20m%5E%7B2%7D%20%7D%7B1000%5E%7B2%7Dmm%5E%7B2%7D%20%20%7D%20%3D0.0001%5Bm%5E%7B2%7D%20%5D)
Now replacing:
![P=100/0.0001\\P=1000000[Pa]](https://tex.z-dn.net/?f=P%3D100%2F0.0001%5C%5CP%3D1000000%5BPa%5D)
Around -3.5 ( might not be completely right ) Frank has a greater mass to he has a low velocity at first, Dion is around half of his weight so he doesn’t have to use as much force to get more than Frank
Answer:
let's say you're on a bus going 50 km/hr, you are moving at a velocity of zero relative to the bus. however, relative to the ground you are moving at the same velocity as the bus.
Explanation:
physics