Answer:
6.76 moles.
Explanation:
2CO(g)+O2 (g) =2CO2(g)
When 2 CO mols were reacted with excess O2 then 2 mols of CO2 is created.
Therefore if 6.76 moles reacted, same number of CO2 will be created.
Answer:
3.74g of ethylene glycol must be added to decrease the freezing point by 0.400°C
Explanation:
One colligative property is the freezing point depression due the addition of a solute. The equation is:
ΔT=Kf*m*i
<em>Where ΔT is change in temperature = 0.400°C</em>
<em>Kf is freezing point constant of the solvent = 1.86°C/m</em>
<em>m is molality of the solution (Moles of solute / kg of solvent)</em>
<em>And i is Van't Hoff constant (1 for a nonelectrolyte)</em>
Replacing:
0.400°C =1.86°C/m*m*1
0.400°C / 1.86°C/m*1 = 0.215m
As mass of solvent is 280.0g = 0.2800kg, the moles of the solute are:
0.2800kg * (0.215moles / 1kg) = 0.0602 moles of solute must be added.
The mass of ethylene glycol must be added is:
0.0602 moles * (62.10g / mol) =
3.74g of ethylene glycol must be added to decrease the freezing point by 0.400°C
<em />
Answer:Strontium-90 and cesium-137 have half-lives of about 30 years (half the radioactivity will decay in 30 years). Plutonium-239 has a half-life of 24,000 years. High-level wastes are hazardous because they produce fatal radiation doses during short periods of direct exposure.
Explanation:
Answer:
The main use for hydrogen sulfide is in the production of sulfuric acid and elemental sulfur. ... H2S is used to prepare the inorganic sulfides you need to make those products. As a reagent and intermediate, hydrogen sulfide is beneficial because it can prepare other types of reduced sulfur compounds.
Answer:
D. 18.7 grams
Explanation:
The coefficients are the key.
Create a proportion with them, and the molar mass, and then solve for x:
