To start this test, you need to identify the variables it presents. As you may already know, there are independent and dependent variables. Independent variables are those that act on a factor, influencing it to generate a result. In the case of this experiment, the independent variable is the completion of the homework. The dependent variable, in turn, is the factor that receives the influence of the independent variable, in this experiment this variable is the final grade you received in the course.
After that you must select a number of students, give them their homework and ask each student to complete a percentage of that amount. An example of this could be that you select 11 students and ask the first to complete 0% of the homework, the second student must complete 10%, the third 20% and so on, and the 11th student must complete 100% of the homework.
after that, note what was the final grade that each student received in the course and make a graph to show the results.
The y-axis of the graph must represent the dependent variable, while the x-axis must represent the independent variable. This way you will show the exact relationship between completing homework and the final grade of the course.
Answer:
525.1 g of BaSO₄ are produced.
Explanation:
The reaction of precipitation is:
Na₂SO₄ (aq) + BaCl₂ (aq) → BaSO₄ (s) ↓ + 2NaCl (aq)
Ratio is 1:1. So 1 mol of sodium sulfate can make precipitate 1 mol of barium sulfate.
The excersise determines that the excess is the BaCl₂.
After the reaction goes complete and, at 100 % yield reaction, 2.25 moles of BaSO₄ are produced.
We convert the moles to mass: 2.25 mol . 233.38 g/mol = 525.1 g
The precipitation's equilibrium is:
SO₄⁻² (aq) + Ba²⁺ (aq) ⇄ BaSO₄ (s) ↓ Kps
IF magnesium sulfide reacts with oxygen in the air it will produce
magnesium oxide + sulfur (IV) oxide
<u><em>explanation</em></u>
magnesium sulfide burn in oxygen to produce magnesium oxide and sulfur (iv) oxide according to the equation below
2MgS +3O2 →2MgO +2SO2
that is 2 moles of MgS react with 3 moles of O2 to produce 2 moles of MgO and 2 moles of SO2
Gdnndjfndmnxndndndjdjdjxncncncnnc