Answer:
1 mole of platinum
Explanation:
To obtain the number of mole(s) of platinum present, we need to determine the empirical formula for the compound.
The empirical formula for the compound can be obtained as follow:
Platinum (Pt) = 117.4 g
Carbon (C) = 28.91 g
Nitrogen (N) = 33.71 g
Divide by their molar mass
Pt = 117.4 / 195 = 0.602
C = 28.91 / 12 = 2.409
N = 33.71 / 14 = 2.408
Divide by the smallest
Pt = 0.602 / 0.602 = 1
C = 2.409 / 0.602 = 4
N = 2.408 / 0.602 = 4
The empirical formula for the compound is PtC₄N₄ => Pt(CN)₄
From the formula of the compound (i.e Pt(CN)₄), we can see clearly that the compound contains 1 mole of platinum.
Answer:
3%
Explanation:
Substract the actual error from the final and multiply by 100
Answer:
The density of the box is 6.25g/cm³
Explanation:
400 ÷ 4³ = 6.25
Answer:
HF - hydrogen bonding
CBr4 - Dispersion
NF3 - Dipole-dipole
Explanation:
Hydrogen bonding occurs when hydrogen is covalently bonded to a highly electronegative atom such as fluorine, chlorine nitrogen, oxygen etc. Hence the dominant intermolecular force in HF is hydrogen bonding.
CBr4 is nonpolar because the molecule is tetrahedral and the individual C-Br dipole moments cancel out leaving the molecule with a zero dipole moment hence the dominant intermolecular force are the dispersion forces.
NF3 has a resultant dipole moment hence the molecules are held together by dipole-dipole interaction.
Physical properties of metal include shiny, ductile, opaque, malleable and good conduction of heat and electricity