Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
<u>Explanation:</u>
Equilibrium expression is denoted by Keq.
Keq is the equilibrium constant that is defined as the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
Example -
aA + bB = cC + dD
So, Keq = conc of product/ conc of reactant
![Keq = \frac{[C]^c [D]^d}{[A]^a [B]^b}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%20%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%20%5BB%5D%5Eb%7D)
So from the equation, H₂CO₃+H₂O = H₃O+HCO₃⁻¹
![Keq = \frac{[H3O^+]^1 [HCO3^-]^1}{[H2CO3]^1 [H2O]^1}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%5E%2B%5D%5E1%20%5BHCO3%5E-%5D%5E1%7D%7B%5BH2CO3%5D%5E1%20%5BH2O%5D%5E1%7D)
The concentration of pure solid and liquid is considered as 1. Therefore, concentration of H2O is 1.
Thus,
![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
Therefore, Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.
Answer:The distribution of electrons in an atom is called as Electronic Configuration. Formula 2n2 helps in the determination of the maximum number of electrons present in an orbit, here n= orbit number.
Explanation:
Answer:
sorry but i am doing this for point
Explanation:
how do I complete this column graph of the number of conduct vs the number of
Answer:
Antibiotics are strong medicines that treat bacterial infections. Antibiotics won't treat viral infections because they can't kill viruses. You'll get better when the viral infection has run its course. Common illnesses caused by bacteria are urinary tract infections, strep throat, and some pneumonia.
Explanation:
antibiotics can treat bacterial infections, such as:
Most sinus infections.
Strep throat.
Urinary tract infections.
Pneumonia.
Most ear infections (otitis media)
Nasty bacterial skin infections (impetigo)
plz mark brainliest