Answer:
0.482 ×10²³ molecules
Explanation:
Given data:
Volume of gas = 2.5 L
Temperature of gas = 50°C (50+273 = 323 k)
Pressure of gas = 650 mmHg (650/760 =0.86 atm)
Molecules of N₂= ?
Solution:
PV= nRT
n = PV/RT
n = 0.86 atm × 2.5 L /0.0821 atm. mol⁻¹. k⁻¹. L × 323 k
n = 2.15 atm. L /26.52 atm. mol⁻¹.L
n = 0.08 mol
Number of moles of N₂ are 0.08 mol.
Number of molecules:
one mole = 6.022 ×10²³ molecules
0.08×6.022 ×10²³ = 0.482 ×10²³ molecules
Sodium is a metal, Chloride is a non-metal.
Right off the bat, you know that in order for both of these atoms to achieve a full valence shell that the metal has to lose electrons, and the non-metal has to gain them.
Therefore, you have the transfer of electrons in this bond in order to form ions.
Na+ and Cl-. This transfer of electrons in a bond is called an {{ Ionic Bond}}
<u>Given:</u>
Mass of MgBr2 = 0.500 g
<u>To determine:</u>
Number of anions in 0.500 g MgBr2
<u>Explanation:</u>
Molar mass of MgBr2 = 24 + 2 (80) = 184 g/mol
Moles of MgBr2 = 0.500 g/184 g.mol-1 = 0.00271 moles
Based on stoichiometry-
1 mole of MgBr2 has 1 mole of Mg2+ cations and 2 moles of Br- anions
Therefore, 0.00271 moles of MgBr2 will have: 2 * 0.00271 = 0.00542 moles of Br-
Now,
1 mole of Br- contains 6.023 * 10²³ anions
0.00542 moles of Br- contain: 0.00542 * 6.023*10²³ = 3.264*10²¹ anions
Ans: There are 3.264*10²¹ anions in 0.5 g of MgBr2
Answer:
The further an electron is from the nucleus. the greater its energy level.
Explanation:
When an electron is close to the nucleus, it is at as low an energy level as it can get.
We must put energy into an electron to pull it away from the attraction of a nucleus.
So, electrons that are further from the nucleus are at higher energy levels.
Answer:
Kc = 0.20
Explanation:
N₂O₄ ⇄ 2NO₂
moles 5.3mol 2.3mol
Vol 5L 5L
Molarity 5.3/5M 2.3/5M
= 1.06M = 0.46M
Kc = [NO₂]²/[N₂O₄] = (0.46)²/(1.06) = 0.1996 ≅ 0.20