Answer:
v₂ = 15.24 m / s
Explanation:
This is an exercise in fluid mechanics
Let's write Bernoulli's equation, where the subscript 1 is for the factory pipe and the subscript 2 is for the tank.
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
They indicate the pressure in the factory P₁ = 140000 Pa, the velocity
v₁ = 5.5 m / s and the initial height is zero y₁ = 0
the tank is at a pressure of P2 = 2000 Pa and a height of y₂ = 6.0 m
P₁ -P₂ + ρ g (y₁ -y₂) + ½ ρ v₁² = ½ ρ v₂²
let's calculate
140,000 - 2000 + ρ 9.8 (0- 6) + ½ ρ 5.5² = ½ ρ v₂²
138000 - ρ 58.8 + ρ 15.125 = ½ ρ v2²
v₂² = 2 (138000 /ρ - 58.8 + 15.125)
v₂ =
In the exercise they do not indicate what type of liquid is being used, suppose it is water with
ρ = 1000 kg / m³
v₂ =
v₂ = 15.24 m / s
Answer:
The electron will get at about 0.388 cm (about 4 mm) from the negative plate before stopping.
Explanation:
Recall that the Electric field is constant inside the parallel plates, and therefore the acceleration the electron feels is constant everywhere inside the parallel plates, so we can examine its motion using kinematics of a constantly accelerated particle. This constant acceleration is (based on Newton's 2nd Law:

and since the electric field E in between parallel plates separated a distance d and under a potential difference
, is given by:

then :

We want to find when the particle reaches velocity zero via kinematics:

We replace this time (t) in the kinematic equation for the particle displacement:

Replacing the values with the information given, converting the distance d into meters (0.01 m), using
, and the electron's kinetic energy:

we get:
Therefore, since the electron was initially at 0.5 cm (0.005 m) from the negative plate, the closest it gets to this plate is:
0.005 - 0.00112 m = 0.00388 m [or 0.388 cm]
Football helmets that are made with padding are believed to have reduced head injuries especially when a player accidentally collides with an object. This is because the impact of the collision is decreased due to the padding that serves as a shock absorber.