Answer:
n= 0.08186
{He}2s^2 2p^6
Explanation:
PV=nRT
n=PV/RT
n= (1.220 atm)(4.3410 L) / (0.0821 atm*L/mol*K)(788.0 K)
n=0.08186
As for the electron configuration:
Ne:
{He} 2s^2 2p^6
or long hang:
1s^2 2s^2 2p^6
Answer:
a. Interference patterns are observed when a wave passes through a barrier with two slits
Explanation:
Interference is a situation where two waves superimpose to form a new wave of a different amplitude. This amplitude can be greater, same or lower.
the diagram attached below shows the movement of a wave through a barrier with two slits.
you can notice the portions of the wave that overlap. This overlapping of waves is the interference.
Thus, option A is correct.
The other options however, are not correct. as shown below:
Option B is wrong as waves exhibit diffraction <em>(it is diffraction of the light wave that produces the rainbows we see in the sky)</em>
Option C is wrong as waves do not travel straight through slits always.
Option D is wrong as waves can also interfere constructively and destructively.
Well an object in motion will stay in motion unless acted upon by the force, but what are the objects?
A student compares the boiling point of substances having different intermolecular forces. <u>Boiling points of various substances</u> is the dependent variable that student most likely use.
<h3>Does the nature of intermolecular forces present in different substance affect their boiling points?</h3>
The boiling point of a substance is proportional to the strength of its intermolecular forces, the higher the boiling point, the stronger the intermolecular forces. We can compare the strengths of intermolecular forces by comparing the boiling points of different substances.
<h3>What properties are affected by intermolecular forces?</h3>
Intermolecular forces are measured by boiling points.
Intermolecular forces increase as bond polarization increases.
Ionic > hydrogen bonding > dipole dipole > dispersion is the order of the strength of intermolecular forces (and thus their impact on boiling points).
<h3>How can you determine strong and weak intermolecular forces?</h3>
Substances with strong intermolecular forces are very attracted to one another and are held together tightly. These substances require a great deal of energy to separate, whereas substances with weak intermolecular forces are held together very loosely and have weak interactions.
Learn more about intermolecular forces:
<u><em>brainly.com/question/13479228</em></u>
#SPJ4